Minimal r-Complete Partitions
نویسنده
چکیده
A minimal r-complete partition of an integer m is a partition of m with as few parts as possible, such that all the numbers 1, . . . , rm can be written as a sum of parts taken from the partition, each part being used at most r times. This is a generalization of M-partitions (minimal 1-complete partitions). The number of M-partitions of m was recently connected to the binary partition function and two related arithmetic functions. In this paper we study the case r ≥ 2, and connect the number of minimal r-complete partitions to the (r + 1)-ary partition function and a related arithmetic function.
منابع مشابه
Local Cohomology with Respect to a Cohomologically Complete Intersection Pair of Ideals
Let $(R,fm,k)$ be a local Gorenstein ring of dimension $n$. Let $H_{I,J}^i(R)$ be the local cohomology with respect to a pair of ideals $I,J$ and $c$ be the $inf{i|H_{I,J}^i(R)neq0}$. A pair of ideals $I, J$ is called cohomologically complete intersection if $H_{I,J}^i(R)=0$ for all $ineq c$. It is shown that, when $H_{I,J}^i(R)=0$ for all $ineq c$, (i) a minimal injective resolution of $H_{I,...
متن کاملEuler Characteristic of the Truncated Order Complex of Generalized Noncrossing Partitions
Abstract. The purpose of this note is to complete the study, begun in the first author’s PhD thesis, of the topology of the poset of generalized noncrossing partitions associated to real reflection groups. In particular, we calculate the Euler characteristic of this poset with the maximal and minimal elements deleted. As we show, the result on the Euler characteristic extends to generalized non...
متن کاملA local approach to the entropy of countable fuzzy partitions
This paper denes and investigates the ergodic proper-ties of the entropy of a countable partition of a fuzzy dynamical sys-tem at different points of the state space. It ultimately introducesthe local fuzzy entropy of a fuzzy dynamical system and proves itto be an isomorphism invariant.
متن کاملSpectral Minimal Partitions for a Family of Tori
We study partitions of the two-dimensional flat torus (R/Z) × (R/bZ) into k domains, with b a real parameter in (0, 1] and k an integer. We look for partitions which minimize the energy, defined as the largest first eigenvalue of the Dirichlet Laplacian on the domains of the partition. We are in particular interested in the way these minimal partitions change when b is varied. We present here a...
متن کاملOn the oriented perfect path double cover conjecture
An oriented perfect path double cover (OPPDC) of a graph $G$ is a collection of directed paths in the symmetric orientation $G_s$ of $G$ such that each arc of $G_s$ lies in exactly one of the paths and each vertex of $G$ appears just once as a beginning and just once as an end of a path. Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete Math. 276 (2004) 287-294) conjectured that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007